HYB-FIX

HIGH-PERFORMANCE HYBRID CHEMICAL ANCHOR

- Urethane-methacrylate based resin
- CE option 1 for cracked and uncracked concrete
- C2 Seismic performance category (M12-M24)
- Certified fire resistance F120
- Comply with LEED®, IEQ Credit 4.1
- A+ Class: emission of volatile organic compounds (VOC) in living environments
- Ideal for extra-heavy anchor systems and for recasting with reinforcing bars
- Excellent long-term creep behaviour
- Dry or wet concrete
- Concrete with submerged holes
- Overhead application allowed
- Certified installation with hollow drill bit

CODES AND DIMENSIONS

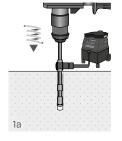
CODE	format	pcs
	[ml]	
HYB280	280	12
HYB420	420	12

Expiry from date of manufacturing: 18 months. Storage temperature between +5 and +25° C.

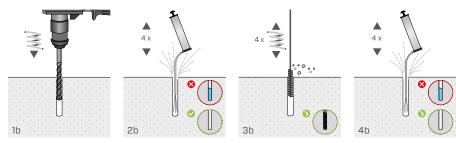
■ ADDITIONAL PRODUCTS - ACCESSORIES

type	description	format	pcs
		[ml]	
MAM400	gun for cartridge	420	1
FLY	gun for cartridge	280	1
STING	nozzle	-	12
STINGEXT	extension tube for nozzle	-	1
STINGRED	nozzle tip reducer	-	1
PLU	injection nozzle	M12 - M30	-
FILL	filling washer	M8 - M24	-
BRUH	steel pipe cleaner	M8 - M30	-
BRUHAND	wire brush handle and extension		
IR (INTERNAL THREADED ROD)	bushing with internal metric thread	M8 - M16	-
PONY	blow pump	-	1
CAT	compressed air tool	-	1
HDE	hollow drill bit for concrete	M8 - M30	-
DUXHA	hollow drill bit for concrete	M16 - M30	-
DUISPS	class M suction system	-	1

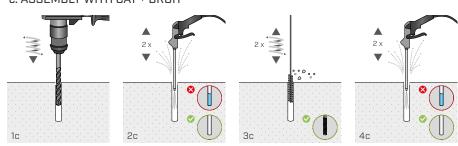
■ INSTALLATION TIME AND TEMPERATURE

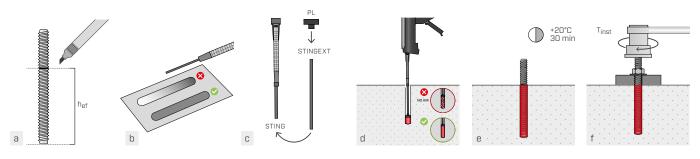

support	workability 	curing time before loading		
temperature	time	dry support	wet support	
-5 ÷ -1 °C	50 min	5 h	10 h	
0 ÷ +4 °C	25 min	3,5 h	7 h	
+5 ÷ +9 °C	15 min	2 h	4 h	
+10 ÷ +14 °C	10 min	1 h	2 h	
+15 ÷ +19 °C	6 min	40 min	80 min	
+20 ÷ +29 °C	3 min	30 min	60 min	
+30 ÷ +40 °C	2 min	30 min	60 min	

Cartridge storage temperature +5 - +40°.

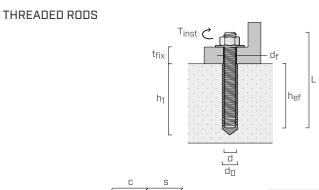

ASSEMBLY

Hole execution: three different installation possibilities.


a. INSTALLATION WITH HOLLOW DRILL BIT (HDE)

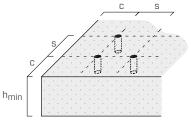

b. ASSEMBLY WITH HP + BRUH

c. ASSEMBLY WITH CAT + BRUH


Rod installation:

INSTALLATION

INSTALLATION GEOMETRY ON CONCRETE | THREADED RODS (TYPE INA or MGS)


 $\begin{array}{c} \textbf{d} \\ \textbf{d}_{0} \\ \textbf{h}_{ef} \\ \textbf{d}_{f} \\ \text{tened} \\ \textbf{T}_{inst} \end{array}$

 t_{fix}

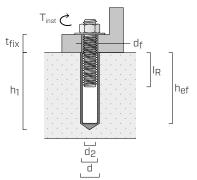
anchor diameter hole diameter in the concrete support effective anchor depth hole diameter in the element to be fas-

maximum tightening torque anchor length maximum fastening thickness minimum hole depth

d	[mm]	M8	M10	M12	M16	M20	M24	M27	M30
d ₀	[mm]	10	12	14	18	22	28	30	35
h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
$h_{\text{ef,max}}$	[mm]	160	200	240	320	400	480	540	600
d_f	[mm]	9	12	14	18	22	26	30	33
T _{inst}	[Nm]	10	20	40	60	100	170	250	300

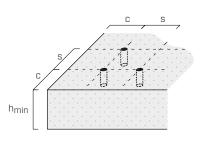
			M8	M10	M12	M16	M20	M24	M27	M30
Minimum spacing	S _{min}	[mm]	40	50	60	75	95	115	125	140
Minimum edge distance	C _{min}	[mm]	35	40	45	50	60	65	75	80
Minimum thickness of concrete support	h _{min}	[mm]	h _{ef} +	30 ≥ 100) mm		1	$n_{ef} + 2 d$	0	

hef


 d_{f}

 $\mathsf{t}_{\mathsf{fix}}$

 h_1


For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

INTERNAL THREADED RODS

internal threaded rod diameter diameter of the element anchored on concrete hole diameter in the concrete support effective anchor depth hole diameter in the element to be fastened maximum tightening torque maximum fastening thickness minimum hole depth length of internal threaded rod

		IR-M8	IR-M10	IR-M12	IR-M16
d ₂	[mm]	8	10	12	16
d	[mm]	12	16	20	24
d_0	[mm]	14	18	22	28
h _{ef,min}	[mm]	70	80	90	96
$h_{\text{ef,max}}$	[Nm]	240	320	400	480
d _f	[mm]	9	12	14	18
T_{inst}	[mm]	10	20	40	60
I _{R,min}	[mm]	8	10	12	16
I _{R,max}	[mm]	20	25	30	32

			IR-M8	IR-M10	IR-M12	IR-M16
Minimum spacing	S _{min}	[mm]	60	75	95	115
Minimum edge distance	c _{min}	[mm]	45	50	60	65
Minimum thickness of concrete support	h _{min}	[mm]	$h_{ef} + 30 \ge 100 \text{ mm}$		$h_{ef} + 2 d_0$	

For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) when installed in C20/25 grade concrete with a thin reinforcing layer, considering spacing, edge-distance, and base-concrete thickness as non-limiting parameters.

UNCRACKED CONCRETE[1]

TENSION

rod	h _{ef,standard}	$N_{Rk,p}/N_{Rk,s}$ [KN]				h _{ef}		N _{Rk,s}	²⁾ [kN]	
	[mm]	5.8 steel	Υм	8.8 steel	Υм	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
M8	80	18,0		29,0	$\gamma_{Ms} = 1,5^{(2)}$	≥ 80	18,0		29,0	
M10	90	29,0	$\gamma_{Ms} = 1.5^{(2)}$	42,0		≥ 100	29,0		46,0	
M12	110	42,0		56,8	≥ 130 42,0 ≥ 180 78,0	≥ 130	42,0		67,0	
M16	128	71,2		71,2		1 5	125,0	1 5		
$M20^{(3)}$	170	109,0		109,0	$\gamma_{Mc} = 1,5^{(4)(5)}$	≥ 250	122,0	1,5	196,0	1,5
M24 ⁽³⁾	210	149,7	$\gamma_{Mc} = 1,5^{(4)(5)}$	149,7		≥ 325	176,0		282,0	
M27 ⁽³⁾	240	182,9		182,9		≥ 390	230,0		368,0	
M30 ⁽³⁾	270	218,2		218,2		≥ 440	280,0		449,0	

SHEAR

rod	h _{ef}	V _{Rk,s} ⁽²⁾ [kN]				
	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs	
M8	≥ 60	11,0		15,0		
M10	≥ 60	17,0		23,0		
M12	≥ 70	25,0		34,0	1,25	
M16	≥ 80	47,0	1 25	63,0		
M20 ⁽³⁾	≥ 100	74,0	1,25	98,0		
M24 ⁽³⁾	≥ 130	106,0		141,0		
M27 ⁽³⁾	≥ 155	138,0		184,0		
M30 ⁽³⁾	≥ 175	168,0		224,0		

CRACKED CONCRETE^[1]

TENSION

rod	h _{ef,standard}		N _{Rk,p} [kN]			h _{ef,max}		N _{Rk,s} /N	Rk,p [KN]	
	[mm]	5.8 steel	YMp	8.8 steel	ΥM	[mm]	5.8 steel	Υм	8.8 steel	ΥM
M8	80	14,1		14,1		160	18,0		28,2	$\gamma_{Mp} = 1.5^{(5)(6)}$
M10	90	21,2	$\gamma_{Mp} = 1,5^{(5)(6)}$	21,2	$\gamma_{Mp} = 1.5^{(5)(6)}$	200	29,0		46,0	
M12	110	33,2		33,2		240	42,0		67,0	$\gamma_{Ms} = 1,5^{(2)}$
M16	128	49,9		49,9		320	78,0	1 = (2)	125,0	$\gamma_{MS} = 1,5$
M20 ⁽³⁾	170	76,3		76,3		400	122,0	$\gamma_{Ms} = 1.5^{(2)}$	196,0	
M24 ⁽³⁾	210	104,8	$\gamma_{Mc} = 1,5^{(4)(5)}$	104,8	$\gamma_{MC} = 1,5^{(4)(5)}$	480	176,0		253,3	
M27 ⁽³⁾	240	128,0		128,0		540	230,0		320,6	$\gamma_{Mp} = 1.5^{(5)(6)}$
M30 ⁽³⁾	270	152,8		152,8		600	280,0		395,8	

SHEAR

rod	h _{ef,standard}	V _{Rk,s} ⁽²⁾ [kN]				
	[mm]	5.8 steel	ΥMs	8.8 steel	YMs	
M8	80	11,0		15,0		
M10	90	17,0		23,0	1,25	
M12	110	25,0		34,0		
M16	128	47,0	1 25	63,0		
M20 ⁽³⁾	170	74,0	1,25	98,0		
M24 ⁽³⁾	210	106,0		141,0		
M27 ⁽³⁾	240	138,0		184,0		
M30 ⁽³⁾	270	168,0		224,0		

incremental factor for N _{Rk,p} ⁽⁷⁾					
	C25/30	1,02			
	C30/37	1,04			
Ψ _c	C40/50	1,08			
	C50/60	1,10			

NOTES:

- $^{(1)}$ Refer to the relevant ETA document for use of rebars.
- (2) Steel failure mode.
- $^{(3)}$ Installation is only allowed with CAT and HDE.
- (4) Concrete cone failure method.
- $^{(5)}$ Valid concrete material safety coefficient value using CAT in the installation. For different installation systems, use a coefficient of γ_M equal to 1,8.
- (6) Pull-out and concrete cone failure.
- ⁽⁷⁾ Tensile-strength increment factor (excluding steel and concrete cone failure) for both cracked and uncracked concrete.

Component A and Component B classification: Skin Sens. 1. May cause an allergic skin reaction.

GENERAL PRINCIPLES:

- Characteristic values according to ETA-20/1285
- The design values are obtained from the characteristic values as follows: $R_d = R_k/\gamma_M. \ \ Coefficients \ \gamma_M \ \ are listed in the table in accordance with the failure characteristics and product certificates.$
- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.
- For the design of anchors subjected to seismic loading refer to ETA and to EN1992-4.
- For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.

STRUCTURAL CHARACTERISTIC VALUES

Valid for a single threaded rod (INA or MGS) when installed with IR in C20/25 grade concrete with a thin reinforcing layer, considering spacing, edge-distance, and base-concrete thickness as non-limiting parameters.

UNCRACKED CONCRETE[1]

TENSION

rod	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]				
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	Υм	
IR-M8	80	110	17,0		27,0	$\gamma_{Ms} = 1,5^{(3)}$	
IR-M10	80	116	29,0	1,5 ⁽³⁾	35,2	$\gamma_{Mc} = 1,5^{(5)(6)}$	
IR-M12 ⁽⁴⁾	125	169	42,0	1,5	67,0	$\gamma_{Ms} = 1,5^{(3)}$	
IR-M16 ⁽⁴⁾	170	226	76,0		109,0	$\gamma_{Mc} = 1,5^{(5)(6)}$	

SHEAR

rod	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} ⁽³⁾ [kN]				
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs	
IR-M8	80	110	9,0		14,0		
IR-M10	80	116	15,0	1 25	23,0	1,25	
IR-M12 ⁽⁴⁾	125	169	21,0	1,25	34,0		
IR-M16 ⁽⁴⁾	170	226	38,0		60,0		

CRACKED CONCRETE^[1]

TENSION

rod	h _{ef}	h _{min} ⁽²⁾	$N_{Rk,s}/N_{Rk,p}$ [kN]			h _{ef}		N _{Rk,s} (³⁾ [kN]		
	[mm]	[mm]	5.8 steel	Υм	8.8 steel	Υм	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs
IR-M8	80	110	17,0	$\gamma_{Ms} = 1,5^{(3)}$	19,6	$\gamma_{Mc} = 1.5^{(6)(7)}$	≥ 120	17,0		27,0	
IR-M10	80	116	24,6	$\gamma_{Mc} = 1.5^{(5)(6)}$	24,6		≥ 150	29,0	1.5	46,0	1 5
IR-M12 ⁽⁴⁾	125	169	42,0	1 E(3)	48,1	$\gamma_{Mc} = 1.5^{(5)(6)}$	≥ 180	42,0	1,5	67,0	1,5
IR-M16 ⁽⁴⁾	170	226	76,0	$\gamma_{Ms} = 1.5^{(3)}$	76,3		≥ 250	76,0		121,0	

SHEAR

rod	h _{ef}	h _{min} ⁽²⁾	V _{Rk,s} (3) [kN]					
	[mm]	[mm]	5.8 steel	ΥMs	8.8 steel	ΥMs		
IR-M8	80	110	9,0		14,0	1,25		
IR-M10	80	116	15,0	1 25	23,0			
IR-M12 ⁽⁴⁾	125	169	21,0	1,25	34,0			
IR-M16 ⁽⁴⁾	170	226	38,0		60,0			

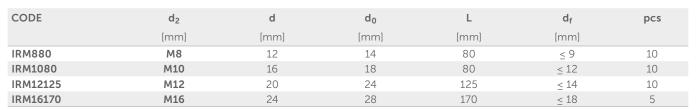
incremental factor for N _{Rk,p} (9)							
	C25/30	1,02					
	C30/37	1,04					
Ψ_{c}	C40/50	1,08					
	C50/60	1.10					

NOTES:

- $^{\left(1\right)}$ Refer to the relevant ETA document for use of rebars.
- (2) Minimum thickness of concrete support.
- (3) Steel failure mode.
- $^{\rm (4)}$ Installation is only allowed with CAC and HDE.
- (5) Concrete cone failure method.
- $^{(6)}$ Valid concrete material safety coefficient value using CAT in the installation. For different installation systems, use a coefficient of γ_M equal to 1,8.
- (7) Pull-out and concrete cone failure.
- (8) Tensile-strength increment factor (excluding steel failure) for both cracked and uncracked concrete.

GENERAL PRINCIPLES:

- Characteristic values according to ETA-20/1285.
- The design values are obtained from the characteristic values as follows: $R_d = R_k/\gamma_M. \ \ \text{Coefficients} \ \gamma_M \ \ \text{are listed in the table in accordance with the failure characteristics and product certificates.}$
- For the calculation of anchors with reduced spacing, or too close to the edge, please refer to ETA. Similarly, in case of fastening on concrete-supports with a better-grade, limited thickness or a thick reinforcing layer please see ETA.
- For the design of anchors subjected to seismic loading refer to ETA and to EN1992-4.
- For specifications of the diameters covered by the various certifications (cracked concrete, uncracked concrete, seismic applications), please refer to ETA.


Component A and Component B classification: Skin Sens. 1. May cause an allergic skin reaction.

IR

BUSHING WITH INTERNAL METRIC THREAD

- 5.8 grade zinc plated steel
- It makes it possible to reach the maximum tensile performance of the chemical anchor system
- Certified installation with the chemical anchor HYB-FIX

d₂ = internal threaded rod diameter

PLU

INJECTION NOZZLE

- For bubble-free filling of the drill hole
- It is used for overhead applications of the chemical anchor
- EPDM material

CODE	rod	internal thread bushing	d ₀	pcs
	[mm]	[mm]	[mm]	
PL14	M12	-	14	20
PL18	M16	IRM10	18	20
PL24	M20	IRM12	24	20
PL28	M24	IRM16	28	20
PL32	M27	-	32	20
PL35	M30	-	35	20

ADDITIONAL PRODUCTS - ACCESSORIES

CODICE	description	format	pcs
STINGEXT	extension tube for nozzle	-	1

FILL

FILLING WASHER

- It makes it possible to fill the annular space as a final step to set the anchor system
- It can be used to drill larger holes in the item to be attached
- Increased shear resistance under seismic load

CODE	rod	d _{INT}	d_{EXT}	s	pcs
	[mm]	[mm]	[mm]	[mm]	
FILL8	M8	9	23	5	10
FILL10	M10	12	26	5	10
FILL12	M12	14	28	5	10
FILL16	M16	17	34	5	5
FILL20	M20	21	41	5	5
FILL24	M24	25	48	6	5

ADDITIONAL PRODUCTS - ACCESSORIES

CODE	description	format	pcs
STINGRED	nozzle tip reducer	-	1

d₀ = hole diameter in the concrete support

d = diameter of the element anchored on concrete

 d_f = diameter hole in the element to be fastened

BRUH

STEEL PIPE CLEANER

CODE	rod	internal thread bushing	d ₀	L	pcs
	[mm]	[mm]	[mm]	[mm]	
BRUH10	M8	-	10	150	1
BRUH12	M10	-	12	150	1
BRUH14	M12	IR-M8	14	150	1
BRUH18	M16	IR-M10	18	150	1
BRUH22	M20	IR-M12	22	150	1
BRUH28	M24	IR-M16	28	150	1
BRUH30	M27	-	30	150	1
BRUH35	M30	-	35	150	1

 d_0 = hole diameter in the support

ADDITIONAL PRODUCTS - ACCESSORIES

CODE	description	format	pcs
BRUHAND	wire brush handle and extension	-	1

DUHXA

HOLLOW DRILL BIT FOR CONCRETE

The state of the s

- It combines two steps in one: Drilling and suction in one work step
- Significantly higher drilling speed due to optimal dust removal
- Dust-free working environment to protect the user
- Universal adapter for vacuum cleaner fits all common industrial vacuum cleaners

CODE	rod	internal thread bushing	d_0	EL	TL	pcs
	[mm]	[mm]	[mm]	[mm]	[mm]	
DUHXA1840	M16	IR-M10	18	400	600	1,
DUHXA2240	M20	IR-M12	22	400	600	1
DUHXA2840	M24	IR-M16	28	400	620	1
DUHXA3040	M27	-	30	400	620	1
DUHXA3540	M30	-	35	400	620	1

d₀ = hole diameter in the support

EL = Useful length

TL = Total length

ADDITIONAL PRODUCTS - ACCESSORIES

CODE	description	format	pcs
DUISPS	class M suction system	-	1

CAT

COMPRESSED AIR TOOL

• The installation with CAT makes it possible to reach the maximum certified performances

CODE	description	format	pcs
CAT	compressed air tool	-	1

